Projectile Driving Band Interactions With Gun Barrels

Author:

Andrews Tony D.1

Affiliation:

1. QinetiQ, Cody Technology Park, Ively Road, Farnborough, Hampshire GU14 0LX, United Kingdom

Abstract

This paper discusses results from a series of trials carried out to determine the effect of the projectile driving band on the stress applied to a 155mm gun barrel during firing. The interference between the driving band and gun barrel can apply significant loads to the barrel and, in extreme cases, lead to premature cracking and failure of the barrel. Strain gage data from firing trials has been used to characterize the external strain from firing different projectiles and charges to identify potential problems and provide information for fatigue analysis. Very high band strains were routinely measured under “oiled bore” conditions, i.e., after barrel cleaning and also during the first one to three rounds of a serial following a long pause in firing, such as at the start of a day’s firing. In general, the strain associated with the driving band was seen to decrease with increased charge zone, barrel wear, and, at higher charge zones, distance along the barrel. In the majority of tests fired at maximum charge, there was no strain peak associated with the driving band in the forward part of the barrel. In conjunction with these experimental observations, a laboratory study has been carried out on the effect of a narrow pressure band on the deformation of a thick-walled tube. An apparatus was constructed in order to pressurize a known length of a smooth-bore cylinder. Sealing width at the edges of the band was minimized to reduce edge effects, and an oversize pressurized “cap” was used to ensure that the bandwidth remained constant during the experiments. Spacer disks were used to vary the bandwidth and also to adjust the cylinder position relative to the band. Measured external strains on the tubes were compared to calculations based on analytical solutions for step pressure changes and are shown to be in good agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference1 articles.

1. Radkowski, P. P., Bluhm, J. I., and Bowie, O. L., 1954, “Formulae for the Stresses and Strains in Elastic, Thick-Walled, Circular Cylinders Resulting From Axially Symmetric Loadings,” Watertown Arsenal WAL No. 893/172.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3