Effects of Panel Misalignment in a Deployable Origami-Based Optical Array

Author:

Roubicek Clark1,Gao Guangjun2,Li Hui2,Stephen Mark2,Magleby Spencer P.1,Howell Larry L.1

Affiliation:

1. Brigham Young University Department of Mechanical Engineering, , Provo, UT 84602

2. NASA Goddard Space Flight Center , 8800 Greenbelt Rd., Greenbelt, MD 20771

Abstract

Abstract Deployable origami-based arrays can offer many benefits for a wide variety of engineering applications. However, alignment in the deployed state is a primary challenge of these arrays; in optical systems, local (single panel) and global (entire array) misalignment can drastically reduce performance. The objective of this work is to compare the relative sensitivities of different degrees-of-freedom (DOFs) of misalignment in deployable origami-based optical arrays and specify which have the greatest effect on performance. To accomplish this, we suggest a practice for defining local and global misalignment in deployable origami-based arrays, we simulate misalignment perturbations and record the resulting power output, and we use compensation techniques to restore as much lost power as possible. We use a deployable LiDAR telescope based on the hexagonal twist origami pattern as a case study, though the conclusions could be extended to other origami-based systems. From simulation, we find that the DOFs which are the most sensitive to misalignment and for which compensation is not effective are the local decenter X (467% power loss per mm misalignment), local decenter Y (463% power loss per mm misalignment), local tilt (357% power loss per degree misalignment), and local tip (265% power loss per degree misalignment) misalignments. These results could help minimize the need for compensation or position sensing and help optical systems designers to know which DOFs should be carefully controlled to maximize energy output.

Funder

Goddard Space Flight Center

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3