An Approach to Identify Six Sigma Robust Solutions of Multi/Many-Objective Engineering Design Optimization Problems

Author:

Ray Tapabrata1,Asafuddoula Md1,Singh Hemant Kumar1,Alam Khairul1

Affiliation:

1. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia e-mail:

Abstract

In order to be practical, solutions of engineering design optimization problems must be robust, i.e., competent and reliable in the face of uncertainties. While such uncertainties can emerge from a number of sources (imprecise variable values, errors in performance estimates, varying environmental conditions, etc.), this study focuses on problems where uncertainties emanate from the design variables. While approaches to identify robust optimal solutions of single and multi-objective optimization problems have been proposed in the past, we introduce a practical approach that is capable of solving robust optimization problems involving many objectives building on authors’ previous work. Two formulations of robustness have been considered in this paper, (a) feasibility robustness (FR), i.e., robustness against design failure and (b) feasibility and performance robustness (FPR), i.e., robustness against design failure and variation in performance. In order to solve such formulations, a decomposition based evolutionary algorithm (DBEA) relying on a generational model is proposed in this study. The algorithm is capable of identifying a set of uniformly distributed nondominated solutions with different sigma levels (feasibility and performance) simultaneously in a single run. Computational benefits offered by using polynomial chaos (PC) in conjunction with Latin hypercube sampling (LHS) for estimating expected mean and variance of the objective/constraint functions has also been studied in this paper. Last, the idea of redesign for robustness has been explored, wherein selective component(s) of an existing design are altered to improve its robustness. The performance of the strategies have been illustrated using two practical design optimization problems, namely, vehicle crash-worthiness optimization problem (VCOP) and a general aviation aircraft (GAA) product family design problem.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference89 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3