Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines

Author:

Riza Nabeel A.1,Sheikh Mumtaz1,Perez Frank1

Affiliation:

1. Photonic Information Processing Systems Laboratory, CREOL, The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816

Abstract

Accuracy, reliability, and long lifetimes are critical parameters for sensors measuring temperature in gas turbines of clean coal-fired power plants. Greener high efficiency next generation power plants need gas turbines operating at extremely high temperatures of 1500°C, where present thermocouple temperature probe technology fails to operate with reliable and accurate readings over long lifetimes. To solve this pressing problem, we have proposed the concept of a new hybrid class of all-silicon carbide (SiC) optical sensor, where a single crystal SiC optical chip is embedded in a sintered SiC tube assembly, forming a coefficient of thermal expansion (CTE) matched all-SiC front-end probe. Because chip and host material are CTE matched, optimal handling of extreme thermal ramps and temperatures is possible. In this article, we demonstrate the first successful industrial combustor rig test of this hybrid all-SiC temperature sensor front-end probe indicating demonstrated probe structural robustness to 1600°C and rig test data to ∼1200°C. The design of the rig test sensor system is presented and data are analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years With Current Technologies;Pacala;Science

2. Energy Implications of Future Stabilization of Atmospheric CO2 Content;Hoffert;Nature (London)

3. What to Do About Coal;Hawkins;Sci. Am.

4. Fahrenheit 3600: Everywhere You Look, The Gas Turbine Industry is Running Hot;Langston;ASME Mechanical Engineering Magazine

5. Research Needs for Future Internal Combustion Engines;Manley;Phys. Today

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3