Laminar Flame Speed Measurements of Kerosene-Based Fuels Accounting for Uncertainties in Mixture Average Molecular Weight

Author:

Keesee Charles L.1,Guo Bing2,Petersen Eric L.1

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

2. Texas A&M University at Qatar, Doha, Qatar

Abstract

Abstract New laminar flame speed experiments have been collected for some kerosene-based liquid fuels: Jet-A, RP-1, and diesel fuel #2. Accurately understanding the combustion characteristics of these, and all kerosene-based fuels in general, is an important step in developing new chemical kinetics mechanisms that can be applied to these fuels. It is well known that the precise composition of these fuels changes from one production batch to the next, leading to significant uncertainty in the mixture average properties. For example, uncertainty in a fuel blend's molecular weight can have a noticeable effect on defining an equivalence ratio for a typical fuel–air mixture, of the order of 15%. Because of these uncertainties, fuel mole fraction, XFUEL, is shown to be a more appropriate parameter for comparison between different batches of fuel. Additionally, a strong linear correlation was detected between the burned-gas Markstein length and the equivalence ratio. This correlation is shown to be useful in determining the acceptability and accuracy of individual data points. Spherically expanding flames were measured over a range of fuel mole fractions corresponding to equivalence ratios of φ = 0.7 to φ = 1.5, at initial conditions of 1 atm and 403 K in the high-temperature, high-pressure (HTHP) constant volume vessel at Texas A&M University. These new results are compared with the limited set of laminar flame speed data currently available in the literature for this fuel.

Funder

National Science Foundation

Qatar National Research Fund

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference41 articles.

1. Flame Studies of Conventional and Alternative Jet Fuels;J. Propul. Power,2011

2. Reference Jet Fuels for Combustion Testing,2017

3. Laminar Flame Speed Experiments of Alternative Liquid Fuels;ASME J. Eng. Gas Turbines Power,2019

4. Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A;Ind. Eng. Chem. Res.,2008

5. Thermal Decomposition Kinetics of RP-1 Rocket Propellant;Ind. Eng. Chem. Res.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3