Progress Towards Data-Driven High-Rate Structural State Estimation on Edge Computing Devices

Author:

Satme Joud1,Coble Daniel1,Priddy Braden1,Downey Austin R. J.1,Bakos Jason D.1,Comert Gurcan2

Affiliation:

1. University of South Carolina , Columbia, South Carolina, United States

2. Benedict College , Columbia, South Carolina, United States

Abstract

Abstract Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (μs) decision-making. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HR-SHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HR-SHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Industrial and Public Power Grids Malfunction Detection Towards Data Driven;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Accelerating LSTM-Based High-Rate Dynamic System Models;2023 33rd International Conference on Field-Programmable Logic and Applications (FPL);2023-09-04

3. High-Rate Structural Health Monitoring: Part-II Embedded System Design;Data Science in Engineering, Volume 10;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3