Experimental Investigation on Hydrodynamics of Two-Phase Crude Oil Flow in Horizontal Pipe With Novel Surfactant

Author:

Gudala Manojkumar1,Banerjee Shirsendu2,Kumar Ravindra1,Rama Mohan Rao T.3,Mandal Ajay1,Kumar Naiya Tarun1

Affiliation:

1. Department of Petroleum Engineering, IIT(ISM), Dhanbad 826004, India e-mail:

2. Department of Petroleum Engineering, K L University, Guntur 522502, Andhra Pradesh, India e-mail:

3. Department of Mechanical Engineering, Vasavi College of Engineering, Hyderabad 500031, India e-mail:

Abstract

The hydrodynamic entrance length, pressure drop analysis, viscosity, and fully developed velocity profile in horizontal pipe for crude oil with and without water and surfactant were studied in a 2 in ID horizontal pipe of length 2.5 m experimentally. Hydrodynamic entry length and fluid characteristics have been examined by varying temperature, water fraction, and flow rates. Temperature was varied by 25–40 °C, flow rates 40–60 LPM, and water 0–15% v/v and Madhuca longifolia from 500 to 2000 ppm. Triton X-100 was mixed with water to increase the emulsion capability during crude oil–water flows. The results showed significant influence of water, flow rate, and temperature on the hydrodynamic entry region length, pressure drop, viscosity, and velocity profiles along with natural surfactant. Pressure drop was reduced by 93.75%, 94.18%, and 93.02% with 15% water and 2000 ppm surfactant at 40 °C for 40 LPM, 50 LPM, and 60 LPM, respectively. Viscosity of the crude oil during flowing is greatly influenced by water and addition of surfactant. After addition of 2000 ppm surfactant and 15% water at 40 °C, viscosity reduced by about 94%. Hydrodynamic entry region length increased from 0.0354 to 0.2014 m, 0.0368 to 0.2336 m, and 0.0384 to 0.2641 m during transportation of crude oil after addition of 2000 ppm surfactant and 15% water at 40 °C for 40 LPM, 50 LPM, and 60 LPM flow, respectively.

Funder

"Department of Science and Technology, Ministry of Science and Technology"

K L University

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3