Determination of Cone Bore Growth Due to Microstructural Changes

Author:

Neu R. W.1,Sehitoglu Huseyin1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

A finite element analysis is used to model cone bore growth in a railroad bearing. Factors which influence the growth and profile of the cone include (a) the initial interference fit between the cone and axle journal, (b) the axial restraint from the torqued cap screws, and (c) a microstructural change in the cone. The primary microstructural change is a transformation of retained austenite to martensite, resulting in a volume expansion. In the model transformation of retained austenite occurred under the raceway of the cone where high contact stresses are located. The analysis shows that the bore profile becomes concave, which in turn does not allow for uniform interface forces between the cone and axle journal. It is shown that with sufficient microstructural change, the initial interference fit is overcome along part of the cone/journal contact, producing a gap between the cone and axle journal. Increasing the initial interference fit reduces the possibility of this gap from developing.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Failure Investigation of Differential Pinion Tapered Roller Bearing;Journal of Failure Analysis and Prevention;2015-08-25

2. Handling abuse causes premature bearing failures;Case Studies in Engineering Failure Analysis;2013-10

3. Simulation of Cone Bore Growth in Bearings With a Three-Ring Model;Journal of Applied Mechanics;1994-09-01

4. Transformation of retained austenite in carburized 4320 steel;Metallurgical Transactions A;1991-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3