Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral Body Strain

Author:

Gustafson Hannah1,Siegmund Gunter23,Cripton Peter1

Affiliation:

1. Department of Mechanical Engineering, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada e-mail:

2. MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC V7A 4S5, Canada;

3. School of Kinesiology, University of British Columbia, 210-6081 University Boulevard, Vancouver, BC V6T 1Z1, Canada e-mail:

Abstract

Strain gages are commonly used to measure bone strain, but only provide strain at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore strain, over an entire region of interest on the bone surface. This study compares vertebral body strains measured using strain gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a strain rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the strain rosette and DIC were 1 με and 24 με, respectively. Bland–Altman analysis was used to compare strain from the DIC and rosette (excluding 44% of trials with some evidence of strain rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was −108 με ± 702 με for the minimum (compressive) principal strain and −53 με ± 332 με for the maximum (tensile) principal strain. Although the DIC has higher noise, it avoids the relatively high risk we observed of strain gage debonding. These results can be used to develop guidelines for selecting a method to measure strain on bone.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3