Development of a Multibody Model to Predict the Settling Point and Interfacial Pressure Distribution in a Seat–Occupant System

Author:

Azizi Yousof1,Puri Tarun2,Bajaj Anil K.2,Davies Patricia2

Affiliation:

1. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

2. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

The location of the hip-joint (H-Point) of a seat occupant is an important design specification which directly affects the seat static comfort. Most car seats are made of polyurethane foam and so the location of the H-Point is dependent on the quasi-static behavior of foam. In this research, a previously developed model of the seat–occupant system is refined by incorporating an improved foam model which is used to study seat and occupant interactions and the location of occupant’s H-Point. The seat is represented by a series of discrete nonlinear viscoelastic elements that characterize the seating foam behavior. The nonlinear elastic behavior of these elements is expressed by a higher order polynomial while their viscoelastic behavior is described by a hereditary type model with parameters that are functions of the compression rate. The nonlinear elastic and viscoelastic model parameters were estimated previously using data obtained from a series of quasi-static compression tests on a car seat foam sample. The occupant behavior is described by a constrained two-dimensional multibody model with five degrees of freedom. A Lagrangian formulation is used to derive the governing equations for the seat–occupant model. These differential equations are solved numerically to obtain the H-Point location. These results are then used to calculate the force distribution at the seat and occupant interfaces. The force distribution at the seat–occupant interface is also investigated experimentally and is found to match qualitatively with the results obtained using the seat–occupant model.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An applied model for predicting memory effects of flexible polyurethane foams;Multidiscipline Modeling in Materials and Structures;2019-11-19

2. Prediction of foam impulse response through combination of hereditary and fractional derivative approaches;Multidiscipline Modeling in Materials and Structures;2019-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3