Transient Creep Strain of a Fiber-Reinforced Metal-Matrix Composite Under Transverse Loading

Author:

Wang Y. M.1,Weng G. J.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08903

Abstract

Based on the combination of Mori-Tanaka’s mean-field concept and Luo-Weng’s solution of a three-phase cylindrically concentric solid, a local-field theory is developed to study the evolution of stress distribution in the ductile matrix and the time-dependent creep strain of a fiber-reinforced metal-matrix composite. Due to the nonlinear stress dependence in the creep rate and the highly heterogeneous nature of the transverse deformation, this local theory is shown to provide a more accurate estimate for the overall transverse creep of the composite than the simpler meanfield theory (the difference between the two however is not significant in the axial tensile creep). The disclosed transverse stress field in the matrix is truly heterogeneous, with the 45 deg region exhibiting a substantially higher effective stress than the 0 deg and 90 deg regions. The stress in the higher stress region is found to decrease continuously; it is passed on to the fibers and thereby serves as an important creep-strengthening mechanism for the composite. The interfacial tensile stress at the pole, which is the highest stress point around the interface, is seen to grow continuously and becomes a potential site for a later creep debonding. The developed micromechanical theory is finally applied to predict the transverse tensile creepstrain of a Borsic/aluminum composite, and the result is found to be in close agreement with the test data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3