Modeling Inelastic Collisions With the Hunt–Crossley Model Using the Energetic Coefficient of Restitution

Author:

Jacobs Daniel A.1,Waldron Kenneth J.1

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail:

Abstract

Modeling collision and contact accurately is essential to simulating many multibody systems. The three parameter Hunt–Crossley model is a continuous collision model for representing the contact dynamics of viscoelastic systems. By augmenting Hertz's elastic theory with a nonlinear damper, Hunt and Crossley captured part of the viscoelastic and velocity dependent behavior found in many systems. In the Hunt–Crossley model, the power parameter and the elastic coefficient can be related to the physical properties through Hertz's elastic theory but the damping coefficient cannot. Generally, the damping coefficient is related to an empirical measurement, the coefficient of restitution. Over the past few decades, several authors have posed relationships between the coefficient of restitution and the damping constant but key challenges remain. In the first portion of the paper, we derive an approximate expression for Stronge's (energetic) coefficient of restitution that has better accuracy for high velocities and low coefficient of restitution values than the published solutions based on Taylor series approximations. We present one method for selecting the model parameters from five empirical measurements using a genetic optimization routine. In the second portion of the paper, we investigate the application of the Hunt–Crossley model to an inhomogeneous system of a rubber covered aluminum sphere on a plate. Although this system does not fit the inclusion criteria for the Hunt–Crossley, it is representative of many systems of interest where authors have chosen the Hunt–Crossley model to represent the contact dynamics. The results show that a fitted model well predicts collision behavior at low values of the coefficient of restitution.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3