Periodic-Node Graph-Based Framework for Stochastic Control of Small Aerial Vehicles

Author:

Agha-mohammadi Ali-akbar1,Agarwal Saurav2,Chakravorty Suman3

Affiliation:

1. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:

2. Department of Aerospace Engineering, Texas A&M University, College Station, TX 77840 e-mail:

3. Associate Professor Department of Aerospace Engineering, Texas A&M University, College Station, TX 77840 e-mail:

Abstract

This paper presents a strategy for stochastic control of small aerial vehicles under uncertainty using graph-based methods. In planning with graph-based methods, such as the probabilistic roadmap method (PRM) in state space or the information roadmaps (IRM) in information-state (belief) space, the local planners (along the edges) are responsible to drive the state/belief to the final node of the edge. However, for aerial vehicles with minimum velocity constraints, driving the system belief to a sampled belief is a challenge. In this paper, we propose a novel method based on periodic controllers, in which instead of stabilizing the belief to a predefined probability distribution, the belief is stabilized to an orbit (periodic path) of probability distributions. Choosing nodes along these orbits, the node reachability in belief space is achieved and we can form a graph in belief space that can handle higher order dynamics or nonstoppable systems (whose velocity cannot be zero), such as fixed-wing aircraft. The proposed method takes obstacles into account and provides a query-independent graph, since its edge costs are independent of each other. Thus, it satisfies the principle of optimality. Therefore, dynamic programming (DP) can be utilized to compute the best feedback on the graph. We demonstrate the method's performance on a unicycle robot and a six degrees of freedom (DoF) small aerial vehicle.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3