Mechanical Properties and Adhesive Scuffing Wear Behavior of Stir Cast Cu–Sn–Ni/Si3N4 Composites

Author:

Nithesh R.1,Radhika N.1,Shiam Sunder S.1

Affiliation:

1. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore 641112, India e-mail:

Abstract

The modern technology developments have seeded for the necessity of composite materials that are incorporated with high hardness, high tensile strength, and better wear properties. Cu–Sn–Ni alloy as well as the composites of varying weight percentage of Si3N4 (5, 10, and 15) are fabricated by liquid metallurgy technique. The alloy and composites are tested for their tensile strength and hardness on Universal Testing Machine and Vickers microhardness tester, respectively. Based on the tests, Cu–Sn–Ni/10 wt. % of Si3N4 is found to have optimum mechanical properties. The scuff type adhesive wear behavior is studied through pin-on-disk tribometer under dry sliding conditions for Cu–Sn–Ni/10 wt. % of Si3N4 composite. Taguchi's design of experiments technique based on L27 orthogonal array model is used for analyses of process parameters in three levels such as applied load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s). The parameters are ranked based on the signal-to-noise ratio and the analysis of variance approach. Based on wear results, applied load is found to have highest stature on influencing wear rate followed by sliding distance and sliding velocity. A generalized wear rate equation is obtained based on the linear regression model and its feasibility is checked. Scanning electron microscope (SEM) analyses revealed severe delamination occurred on maximum load condition. The development of this copper composite can have the possibility of replacing aluminum bearings.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3