Theoretical Dynamic Modeling and Validation of Braided Pneumatic Artificial Muscles

Author:

Slightam Jonathon E.1,Nagurka Mark L.1

Affiliation:

1. Department of Mechanical Engineering, Marquette University, Milwaukee, WI 53233

Abstract

Abstract The high force-to-weight ratios of braided fluidic artificial muscles (AMs) are ideal for human scale and mobile robot applications. Prior modeling efforts focus on the theoretical static characteristics or empirical dynamic models of these actuators when pressurized. This paper develops a comprehensive high fidelity theoretical dynamic model based on first principles for braided pneumatic AMs and presents experimental validation. A novel theoretical model for the nonlinear stiffness is derived to describe the pressure–displacement behavior. The stiffness model, together with friction, damping, and inertia models, forms an equation of motion (EOM) for braided pneumatic AMs. The EOM is coupled with first-order servopneumatic pressure dynamics, resulting in a third-order system model. System model simulations are compared to experimental results of prototypes with nine different geometries. On average, the system model is able to predict the quasi-static displacement within 7% and the dynamic response within 11%. The theoretical model is also benchmarked against a high fidelity curve fit method, with the empirical method showing a 2% improvement in only quasi-static scenarios. The model promises to be useful for mechanical system and model-based control designs.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference38 articles.

1. Fluid Actuated Motor System and Stroking Device,1957

2. The Characteristics of the McKibben Artificial Muscle,1961

3. Measurement and Modeling of McKibben Pneumatic Artificial Muscles;IEEE Trans. Rob. Autom.,1996

4. Improved Modeling and Assessment of Pneumatic Muscle Actuators,2000

5. Experimental Characterization and Static Modeling of McKibben Actuators;ASME J. Mech. Des.,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3