On Validation of Extended State Observer Through Analysis and Experimentation

Author:

Zheng Qing1,Gao Linda Q.2,Gao Zhiqiang3

Affiliation:

1. Department of Electrical and Computer Engineering, Gannon University, Erie, PA 16541e-mail:

2. Department of Mathematics, North Central College, Naperville, IL 60540 e-mail:

3. Center for Advanced Control Technologies, Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH 44115e-mail:

Abstract

This paper is concerned with the question of, for a physical plant to be controlled, whether or not its internal dynamics and external disturbances can be realistically estimated in real time from its input–output data. A positive answer would have significant implications on control system design, because it means that an accurate model of the plant is perhaps no longer required. Based on the extended state observer, it is shown that, for an nth order plant, the answer to the above question is indeed yes. In particular, it is shown that the estimation error converges to the origin asymptotically when the model of the plant is given. In face of large dynamic uncertainties, the estimation error is shown to be bounded. Furthermore, it is demonstrated that the error upper bound monotonously decreases with the bandwidth. Note that this is not another parameter estimation algorithm in the framework of adaptive control. It applies to a large class of nonlinear, time-varying processes with unknown dynamics. The solution is deceivingly simple and easy to implement. The results of analysis are further verified through simulation and hardware tests.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3