A Computational Model for Predicting the Life of Tubes Used in Petrochemical Heater Service

Author:

Simonen F. A.1,Jaske C. E.2

Affiliation:

1. Battelle Pacific Northwest Laboratory, Richland, Wash. 99352

2. Battelle Columbus Laboratories, Columbus, Ohio 43201

Abstract

This paper describes a model developed for computer simulation of stresses in heater tubes used in petrochemical service. The model predicts the damage to the tube material and thus provides an assessment of both tube design life and residual-life of tubes that have been subjected to service exposure. The analysis procedure has been incorporated into a computer code (TUBE), which has been applied to a number of applications for heat-resistant alloys. The focus of these applications has been to address the effect of sustained and cyclic loadings on the predicted service lives of tubes used in elevated temperature service. The model was originally developed at Battelle-Columbus in the 1970s, as part of an industrial group research program on “Materials for Steam Reformer Furnaces.” The computer model uses conventional numerical approaches [1–4] to solve finite element models of two-dimensional creep problems. This paper addresses the practical difficulties of applying such models to real service conditions and real commercial alloys.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of variations internal pressure on cracking radiant coils distortion;Structures;2021-12

2. Structural Integrity in the Petrochemical Industry;Reference Module in Materials Science and Materials Engineering;2016

3. Failure Analysis and Remaining Life Assessment of Methanol Reformer Tubes;Journal of Failure Analysis and Prevention;2009-10-07

4. Structural Integrity in the Petrochemical Industry;Comprehensive Structural Integrity;2003

5. Structural Integrity in the Petrochemical Industry;Comprehensive Structural Integrity;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3