A Measure of the Information Loss for Inspection Point Reduction

Author:

Wärmefjord Kristina1,Carlson Johan S.2,Söderberg Rikard1

Affiliation:

1. Department of Product and Production Development, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

2. Fraunhofer-Chalmers Research Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden

Abstract

Since the vehicle program in the automotive industry gets more and more extensive, the costs related to inspection increase. Therefore, there are needs for more effective inspection preparation. In many situations, a large number of inspection points are measured, despite the fact that only a small subset of points is needed. A method, based on cluster analysis, for identifying redundant inspection points has earlier been successfully tested on industrial cases. Cluster analysis is used for grouping the variables into clusters, where the points in each cluster are highly correlated. From every cluster only one representing point is selected for inspection. In this paper the method is further developed, and multiple linear regression is used for evaluating how much of the information is lost when discarding an inspection point. The information loss can be quantified using an efficiency measure based on linear multiple regression, where the part of the variation in the discarded variables that can be explained by the remaining variables is calculated. This measure can be illustrated graphically and that helps to decide how many clusters that should be formed, i.e., how many inspection points that can be discarded.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference17 articles.

1. Geometrical Inspection Point Reduction for Rigid and Non-Rigid Parts Using Cluster Analysis—An Industrial Verification;Wärmefjord

2. Geometrical Inspection Point Reduction Based on Combined Cluster and Sensitivity Analysis;Carlson

3. Virtual Geometry Assurance for Effective Product Realization;Söderberg

4. Computer-Aided Tolerance Chain and Stability Analysis;Lindkvist;J. Eng. Des.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3