Discrete Greenwood–Williamson Modeling of Rough Surface Contact Accounting for Three-Dimensional Sinusoidal Asperities and Asperity Interaction

Author:

Zhang S.12,Song H.3,Sandfeld S.3,Liu X.12,Wei Y. G.4

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

3. The Micromechanical Materials Modelling Group, Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09599, Germany

4. College of Engineering, Peking University, Beijing 100871, China

Abstract

Abstract The Greenwood–Williamson (GW) model has been one of the commonly used contact models to study rough surface contact problems during the past decades. While this has been a successful model, it still has a number of restrictions: (i) surface asperities are spheres; (ii) the overall deformation must be assumed to be small enough, such that there is no interaction between asperities, i.e., they are independent of each other; and (iii) asperity deformation remains elastic. This renders the GW model unrealistic in many situations. In the present work, we resolve above restrictions in a discrete version of the GW model: instead of spherical asperities, we assumed that the surface consists of three-dimensional sinusoidal asperities which appear more similar to asperities on a rough surface. For single asperity mechanical response, we propose a Hertz-like analytical solution for purely elastic deformation and a semi-analytical solution based on finite element method (FEM) for elastic–plastic deformation. The asperity interaction is accounted for by discretely utilizing a modified Boussinesq solution without consideration of asperity merger. It is seen that the asperity interaction effect is more than just the delay of contact as shown in the statistical model, it also contributes to the loss of linearity between the contact force and the contact area. Our model also shows that: for elastic contact, using spherical asperities results in a larger average contact pressure than using sinusoids; when plasticity is taken into account, using a sphere to represent asperities results in a softer response as compared with using sinusoids. It is also confirmed that sinusoidal asperities are a much better description than spheres, by comparison with fully resolved FEM simulation results for computer-generated rough surfaces.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Youth Innovation Promotion Association CAS

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3