Motion Compensator for an Untethered Walking Insect Using Adaptive Model Predictive Control

Author:

Rahman Kaushik1,Ehme Daniel1,Penick Clint2,Kim Dal Hyung1

Affiliation:

1. Kennesaw State University Department of Mechanical Engineering, , Marietta, GA 30060

2. Kennesaw State University Ecology, Evolution & Organismal Biology, , Kennesaw, GA 30144

Abstract

Abstract A locomotion compensator is normally utilized to observe the behavior of walking insects. These compensators cancel out the movement of freely walking insects to facilitate long-term imaging for studying behavior. However, controlling the locomotion compensator with a small error (≤ 1 mm) has been challenging due to the random motion of walking insects. This study introduces an adaptive model predictive control (MPC) approach combined with trajectory prediction to effectively control the transparent omnidirectional locomotion compensator (TOLC) for a randomly walking fire ant. The proposed MPC with prediction (MPCwP) utilizes the average velocity from the previous gaiting cycle to estimate its future trajectory. Experimental results demonstrate that MPCwP significantly outperforms MPC without prediction (MPCwoP), which relies solely on the current position and orientation. The distance error of the MPCwP method remains below 0.6 mm for 90.3% and 1.0 mm for 99.2% of the time, whereas MPCwoP achieves this only 32.6% and 69.1% of the time, respectively. Furthermore, the proposed method enhances the tracking performance of the heading angle, with the heading angle error staying below 8 deg for 92.6% of the time (wθ=1.0). The enhanced performance of the proposed MPC has the potential to improve the observation images and enable the integration of additional equipment such as an optical microscope for brain or organ imaging.

Publisher

ASME International

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3