Fabrication of Continuously Varying Thickness Micro-Cantilever Using Bulk Lithography Process

Author:

Bhole Kiran1,Ekshinge Sunil1,Gandhi Prasanna1

Affiliation:

1. Indian Institute of Technology Bombay, Mumbai, MH, India

Abstract

This paper presents fabrication of varying thickness polymer micro-cantilever using recently developed and characterized, single scan, three-dimensional (3D) micro-fabrication process termed as “bulk lithography”. The process allows fabrication of 3D microstructures that demonstrate continuous variation in the thickness direction as against the discrete variation provided by the normal microstereolithography (layer-by-layer) and other VLSI processes. The required depth variation is obtained during fabrication by allowing unconstrained depth photopolymerization and varying laser exposure while scanning. Towards goal to achieve the control over cured depth and smooth free surface (down facing surface), the process is characterized for cured depth and width under wide range of energy dose at different exposure duration. The depth characterization, represented earlier in a form of an empirical model, is used programmatically to impose any desired spatial intensity variation during scan. Additional width characterization, presented in this paper, is used to optimize the line spacing for achieving smooth unconstrained surface. Specific case of fabrication of tapered micro-cantilever is demonstrated with the proposed technique.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning approach to predict viscous fingering in Hele-Shaw cells;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-30

2. Computer aided approach for case specific design of fixture for slot milling process;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-13

3. A practical approach towards utilisation of the net-shaped micro-structures developed in the lifting plate Hele–Shaw cell for micro-mixing;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-01-07

4. Experimental investigation of electrochemical discharge drilling (ECDM-D) performance characteristics for N-BK7 glass material;International Journal on Interactive Design and Manufacturing (IJIDeM);2022-10-06

5. Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele-Shaw cell;International Journal on Interactive Design and Manufacturing (IJIDeM);2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3