Fracture Simulation Using an Elasto-Viscoplastic Virtual Internal Bond Model With Finite Elements

Author:

Thiagarajan Ganesh1,Huang Yonggang Y.2,Hsia K. Jimmy3

Affiliation:

1. Department of Civil Engineering, University of Missouri, Kansas City, MO 64110

2. Department of Mechanical and Industrial Engineering, University of Illinois—Urbana-Champaign, Urbana, IL 61801

3. Department of Theoretical and Applied Mechanics, University of Illinois—Urbana-Champaign, Urbana, IL 61801

Abstract

A virtual internal bond (VIB) model for isotropic materials has been recently proposed by Gao (Gao, H., 1997, “Elastic Waves in a Hyperelastic Solid Near its Plane Strain Equibiaxial Cohesive Limit,” Philos. Mag. Lett. 76, pp. 307–314) and Gao and Klein (Gao, H., and Klein, P., 1998, “Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds,” J. Mech. Phys. Solids 46(2), pp. 187–218), in order to describe material deformation and fracture under both static and dynamic loading situations. This is made possible by incorporating a cohesive type law of interaction among particles at the atomistic level into a hyperelastic framework at the continuum level. The finite element implementation of the hyperelastic VIB model in an explicit integration framework has also been successfully described in an earlier work by the authors. This paper extends the isotropic hyperelastic VIB model to ductile materials by incorporating rate effects and hardening behavior of the material into a finite deformation framework. The hyperelastic VIB model is formulated in the intermediate configuration of the multiplicative decomposition of the deformation gradient framework. The results pertaining to the deformation, stress-strain behavior, loading rate effects, and the material hardening behavior are studied for a plate with a hole problem. Comparisons are also made with the corresponding hyperelastic VIB model behavior.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastoplastic augmented virtual internal bond modeling for rock: A fracture‐plasticity combined constitutive model;International Journal for Numerical and Analytical Methods in Geomechanics;2023-03-12

2. Modeling of progressive damage in concrete using multidimensional virtual internal bond method;International Journal for Numerical and Analytical Methods in Geomechanics;2020-08-07

3. Numerical simulation of creep fracture with internal time-dependent hyperelastic-Kelvin cohesive bonds;Engineering Fracture Mechanics;2019-05

4. Mechanics of Carbon Nanotubes and Their Composites;Handbook of Mechanics of Materials;2019

5. Mechanics of Carbon Nanotubes and Their Composites;Handbook of Mechanics of Materials;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3