An Experimental Study of Water Flow in Smooth and Rough Rectangular Micro-Channels

Author:

Baviere R.1,Ayela F.1,Le Person S.2,Favre-Marinet M.2

Affiliation:

1. Centre de Recherches sur les Tre`s Basses Tempe´ratures, Grenoble Cedex, France

2. Laboratoire des Ecoulements Ge´ophysiques et Industriels, Grenoble Cedex, France

Abstract

This paper presents experimental results concerning water flow in smooth and rough rectangular micro-channels. It is part of a work intended to test the classical fluid mechanics laws when the characteristic length scale of inner liquid flows falls below 500μm. The method consists in determining experimental friction coefficients as a function of the Reynolds number. This implies simultaneous measurements of pressure drop and flow rates in microstructures. The two experimental apparatus used in this study enabled us to explore a wide range of length scales (7μm to 300μm) and of Reynolds number (0.01 to 8,000). Classical machining technologies were used to make micro-channels of various heights down to a scale of 100μm. Smaller silicon-Pyrex micro-channels were also made by means of silicon-based micro technologies. In these structures, friction coefficients have been measured locally with Cu-Ni strain gauges. For every height tested, both smooth and rough walls were successively used. When compared to macro-scale correlation the results demonstrate that i) In the smooth case, friction is correctly predicted by the Navier-Stokes equations with the classical kinematic boundary conditions, ii) For 200μm high channels, visualizations show transition to turbulence at Reynolds number of about 3,000. The presence of roughness elements did not significantly influence this result and iii) Roughness considerably increases the friction coefficient in the laminar regime. However, the Poiseuille number remains independent of the Reynolds number.

Publisher

ASMEDC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3