Frequency Window Implementation of Adaptive Multi-Level Substructuring

Author:

Bennighof J. K.1,Kaplan M. F.1

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas

Abstract

Adaptive multi-level substructuring (AMLS) is a method for reducing the order of a complex structure’s finite element model by orders of magnitude, while ensuring that the accuracy available from the original model is preserved. A structure’s finite element model is transformed to a much more efficient representation in terms of approximate vibration modes for substructures on multiple levels. An adaptive procedure constructs an optimal model for satisfying a user-specified error tolerance, by determining which modes should be included in the model. In this paper, a frequency window implementation of AMLS is developed, in which frequency response analysis can be done over a frequency window at little additional cost beyond that of the center frequency solution. A numerical example is presented.

Publisher

ASME International

Subject

General Engineering

Reference7 articles.

1. Bennighof, J. K., and Kim, C. K., 1992, “An Adaptive Multi-Level Substructuring Method for Efficient Modeling of Complex Structures,” 33rd AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics and Materials Conference, Dallas, pp. 1631–1639. Submitted to AlAA Journal

2. Bennighof, J. K., 1993, “Adaptive Multi-Level Substructuring for Acoustic Radiation and Scattering from Complex Structures,” Computational Methods for Fluid/Structure Interaction, A. J. Kalinowski, ed., ASME, New York, AMD-Vol. 178, pp. 25–38.

3. Bennighof, J. K., DSouza, P. D., Kaplan, M. F., Subramaniam, M., and Tutt, J. C., 1994, “Adaptive Multi-Level Substructuring for Computing Acoustic Radiation and Scattering from Complex Structures,” 127th Meeting of the Acoustical Society of America, Paper No. 4pSAa3, Cambridge, Mass.

4. Craig R. R. , and BaraptonM. C. C., 1968, “Coupling of Substructures for Dynamic Analysis,” AIAA Journal, Vol. 6, pp. 1313–1319.

5. Duff, I. S., Erisman, A. M., and Reid, J. K., 1986, Direct Methods for Sparse Matrices, Oxford University Press, New York, pp. 218–221.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3