Affiliation:
1. Innovative Research, Inc., Plymouth, MN
2. IBM Corporation, Poughkeepsie, NY
Abstract
In raised-floor data centers, distributed leakage flow—the airflow through seams between panels on the raised floor—reduces the amount of cooling air available at the inlets of the computer equipment. This airflow must be known to determine the total cooling air requirement in a data center. The amount of distributed leakage flow depends on the area of the seams and the plenum pressure, which, in turn, depends on the amount of airflow into the plenum and the total open area (combined area of perforated tiles, cutouts, and seams between panels) on the raised floor. The goal of this study is to outline a procedure to measure leakage flow, to provide data on the amount of the distributed leakage flow, and to show the quantitative relationship between the leakage flow and the leakage area. It also uses a computational model to calculate the distributed leakage flow, the flow through perforated tiles, and the plenum pressure. The results obtained from the model are verified using the measurements. Such a model can be used for design and maintenance of data centers. The measurements show that the leakage flow in a typical data center is between 5–15% of the available cooling air. The measured quantities were used to estimate the area of the seams; for this data center, it was found to be 0.35% of the floor area. The computational model represents the actual physical scenarios very well. The discrepancy between the calculated and measured values of leakage flow, flow through perforated tiles, and plenum pressure is less than 10%.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献