Quantification of Cavitation in Neat and Calcium Carbonate-Filled High-Density Polyethylene Subjected to Tension

Author:

Addiego F.,Di Martino J.1,Ruch D.1,Dahoun A.2,Godard O.2,Patlazhan S.3

Affiliation:

1. Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 Rue de Luxembourg, L-4221 Esch-sur-Alzette, Luxembourg

2. Institut Jean Lamour, Nancy-Université, Parc de Saurupt, F-54042 Nancy Cedex, France

3. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Kosygin Street 4, 119991 Moscow, Russia

Abstract

Cavitation-induced deformation mechanisms in neat semicrystalline polymers, i.e., crazing, and in the derived composites, i.e., particle-matrix debonding, are generally activated during the transition between viscoelastic and viscoplastic deformation stages. However, little quantitative information about the void evolution with the drawing level is to date available in the literature. The objective of this work is to quantify cavitation mechanisms in neat and calcium carbonate-filled high-density polyethylene (HDPE) subjected to tensile deformation. Attention was first focused on the properties of the materials that were assessed by means of a thermogravimetric analyzer, a differential scanning calorimeter, a scanning electron microscope (SEM), and a dynamic mechanical analyzer. In a second step, macroscopic aspects of cavitation were studied by quantifying volume variation of the materials subjected to tension using an accurate optical extensometer (VidéoTraction). Attention was then turned to microscopic features of cavitation through a careful quantification of void density and shape factor by means of a method coupling a SEM with an image analysis procedure. At the two scales of interest, the results demonstrate that (i) the void density generated by crazing in neat HDPE or particle-matrix debonding in the composites gradually increases with the deformation state, (ii) void density induced by debonding is higher than that generated by crazing, and (iii) decreasing particles size causes an increase of void density. We also estimated the void shape factor, that is, ratio between the height and the width of the cavities. In all the studied materials, this parameter starts from a value that is below 1 and increases by a factor of 2 with increasing deformation. Moreover, in the case of the composites, one notes a higher void shape factor compared with the neat material, and particle size does not influence this parameter. The results provided by this paper can be the basis of a physically based model predicting cavitation mechanisms in semicrystalline polymers.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3