Three-Dimensional Interaction Effects in an Internally Multicracked Pressurized Thick-Walled Cylinder— Part I: Radial Crack Arrays

Author:

Perl M.1,Levy C.2,Pierola J.2

Affiliation:

1. The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

2. Department of Mechanical Engineering, Florida International University, Miami, FL 33199

Abstract

Under certain conditions, numerous internal surface cracks develop in pressurized thick-walled cylinders, both in the radial and longitudinal directions. For fatigue life assessment of such vessels, the 3-D interaction effects among these cracks on the prevailing stress intensity factors (SIFs) need evaluation. In Part I of this paper, radial crack arrays are considered exclusively. The mode I SIF distribution for a wide range of semi-circular and semi-elliptical cracks are evaluated. The 3-D analysis is performed via the finite element method with the submodeling technique, employing singular elements along the crack front. SIFs are evaluated for arrays of up to n = 180 cracks; for a wide range of crack depth to wall thickness ratios, a/t, from 0.05 to 0.6; and, for various ellipticities of the crack, i.e., the ratio of crack depth to semicrack length, a/c, from 0.2 to 2. Using a least-squares fit, two simple expressions for the most critical (n = 2) SIFs are obtained for sparse and dense crack arrays. The formulas, which are functions of a/t and a/c, are of very good engineering accuracy. The results clearly indicate that the SIFs are considerably affected by the interaction among the cracks in the array as well as the three-dimensionality of the problem. In Part II of this paper, the interaction effects between longitudinal coplanar cracks will be analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3