Design of Full-Scale Endwall Film Cooling of a Turbine Vane

Author:

Liu Jian1,Du Wei2,Zhang Guohua3,Hussain Safeer1,Wang Lei1,Xie Gongnan4,Sundén Bengt1

Affiliation:

1. Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, Lund, SE 22100, Sweden

2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

3. Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, Lund, SE 22100, Sweden; School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

4. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

Abstract

Abstract Endwall film cooling is a significant cooling method to protect the endwall region and the junction region of endwall and a turbine vane, where usually a relatively high temperature load exists. This work aims to find the optimized arrangement of film cooling holes on the endwall and improve the film cooling in some difficult regions on the endwall, such as pressure side-endwall junction region. Several ideas for film cooling hole arrangement design are proposed, based on the pressure coefficient distribution, the streamline distribution, and the heat transfer coefficient (HTC) distribution, respectively. Four specified designs are built and compared. The results are obtained by numerical calculations with a well-validated turbulence model, the k–ω shear stress transport (SST) model. From this work, the designs based on the pressure coefficient distribution (designs 1 and 2) force the flow from the pressure side to the suction side (SS), especially in design 2, which adopts compound angle holes. The designs based on pressure coefficients have benefit in the cooling of the SS but give worse coolant coverage on the pressure side. In addition, designs 1 and 2 have little influence on the original pressure field. The design based on the streamline distributions (design 3) has larger coolant coverage on the endwall and provides good coolant coverage on the endwall and pressure side junction region. The design based on the HTC distribution provides large overall film cooling effectiveness on both the pressure side and the SS. More film cooling holes are placed on the high temperature regions, which is more effective in practice.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3