Feasibility Study for Real Time Measurement of Wheel-Rail Contact Using an Ultrasonic Array

Author:

Dwyer-Joyce R. S.1,Yao C.1,Zhang J.2,Lewis R.1,Drinkwater B. W.2

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

2. Department of Mechanical Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK

Abstract

Failure of a wheel-rail contact is usually by wear or fatigue of either component. Both mechanisms depend on the state of stress, which in turn depends on size and location of the contact patch. In this work, the feasibility of an ultrasonic approach for measuring the contact, real time on a rail, has been evaluated. The approach is based on the physical phenomenon of ultrasonic reflection at an interface. If the wheel and rail surfaces make contact, and are under high stress, they will transmit an ultrasonic pulse. However, if there is no contact, or the contact is under low stress, then the wave is completely or partially reflected. By measuring the proportion of the wave reflected, it is possible to deduce the extent of the contact area and also estimate the pressure distribution. In a previous work (Marshall, Lewis, Dwyer-Joyce, Olofsson, and Bjorklund, 2006, “Experimental Characterisation of Wheel-Rail Contact Patch Evolution,” ASME J. Tribol., 128(3), pp. 493–504), static wheel-rail contacts were scanned using a transducer to build up a two-dimensional (2D) map of the contact. The procedure was time consuming and could in no way be used for measurements online. In this work, a method is presented that could be used at line speeds, and so provide wheel-rail contact measurements in field trials. The scan is achieved by using an array transducer that performs a one dimensional electronic line scan. This, coupled with the speed of travel of the contact patch past the sensor location, enables a 2D map of the contact to be produced. Specimens were cut from wheel and rail sections and loaded together hydraulically in a biaxial frame. An array transducer was mounted beneath the rail specimen. The array transducer consisted of 64 ultrasonic elements that could be pulsed independently, simultaneously, or with controlled phase difference. The signals were reflected back from the contact to effectively produce a line scan. The transducer was physically moved to simulate the translation of the contact patch and so generate a series of 2D reflection profiles. Contacts under a range of normal and lateral loads have been measured and compared with some simple results using a pressure sensitive film. While the map produced by ultrasonic reflection is relatively coarse, the results agree well with measurements from the pressure sensitive film. The work concludes with a discussion of how this array measurement procedure might be implemented at full line speed, and what resolution could potentially be achieved.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3