Numerical Investigation of Unsteady Multiphase Nanofluid-Free Convection Flow About a Vertical Cylinder With Non-Uniform Temperature

Author:

Narahari Marneni1,Suresh Kumar Raju S.2,Pendyala Rajashekhar3,Ilyas Suhaib Umer3

Affiliation:

1. Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

2. Department of Mathematics and Statistics, College of Science, King Faisal University, Al Asha 31982, Saudi Arabia

3. Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

Abstract

Abstract A numerical investigation on the transient-free convection flow of the multiphase nanofluid past a vertical cylinder, which has a power-law variation surface temperature along with the height, is presented. The problem has typical engineering applications involving cooling of vertical cylindrical rods in mechanical/manufacturing systems, cooling of nuclear reactors, and the design of other advanced cooling technologies. Buongiorno’s model is applied in this research, which incorporates thermophoresis and Brownian diffusion effects of nanoparticles. The zero-volume flux condition is implemented for nanoparticle concentration at the boundary to obtain realistic results. A robust second-order accurate finite-difference scheme of Crank–Nicolson type is applied to tackle the system of coupled non-linear partial differential equations numerically. The impacts of time, variable surface temperature power-law exponent, Brownian and thermophoresis parameters are investigated on nanofluid flow and heat transfer aspects. The decisive finding suggests that the effect of the power-law exponent of the variable wall temperature is to reduce the nanoparticle relocation, velocity, and temperature in the nanofluid boundary layer causing the heat transfer enhancement. The skin-friction decreased significantly with the rise of the power-law exponent of the wall temperature. The present numerical scheme is corroborated by comparing the average skin-friction results with the available literature for clear fluid.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3