A Distinction Between Different Types of Stall in a Centrifugal Compressor Stage

Author:

Ka¨mmer N.1,Rautenberg M.1

Affiliation:

1. Institute for Turbomachinery and Gas Dynamics, Universita¨t Hannover, Hannover, West Germany

Abstract

The flow at the stall line of a centrifugal compressor with vaneless diffuser was investigated at different speeds. A distinction between three kinds of stall phenomena could be made. One type of stall with regurgitation of fluid at the impeller inlet was of a nonperiodic character, whereas two different types of periodic stall appeared at higher speeds. The rotating nature of these two types of stall was verified from a comparison of signals of peripherally spaced pressure transducers. The low-frequency rotating stall exhibited features of diffuser generated stall and a lobe number of three was measured. From a detailed investigation of the high-frequency rotating stall, which included unsteady probe measurements upstream and downstream of the impeller, it can be shown that this type of rotating stall is generated in the impeller by a periodic breakdown of energy transfer from the rotor to the flow. This conclusion is supported by the distribution of shroud static pressures.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy generation rate analysis of turbocharger radial flow compressor in range from surge to choke;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-11-18

2. Experimental investigation of characteristics of instability evolution in a centrifugal compressor;Chinese Journal of Aeronautics;2023-04

3. Roles of recirculating bubble on the performance of centrifugal compressors;Aerospace Science and Technology;2021-11

4. Experimental Analysis of Surge-Detection System Based on Pressure Derivatives at Part-Speed Operation;Journal of Engineering for Gas Turbines and Power;2021-03-15

5. Numerical and Experimental Research for an Unconventional Turboshaft Intake Manifold;AIAA Propulsion and Energy 2020 Forum;2020-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3