Affiliation:
1. Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803
Abstract
This study investigates the performance of several existing turbulence models for the prediction of film coolant jet in a crossflow. Two-equation models employing k–ε and k–ω closures, broadly categorized as high-Reynolds-number formulations, low-Reynolds-number formulations, DNS-based formulation, and nonlinear formulations have been used to simulate the flow. In all, seven different turbulence models have been tested. Predictions with different models have been compared with experimental results of Ajersch et al. (1995) and with each other to critically evaluate model performance. The assessment of models has been done keeping in mind that all models have been formulated for wall-bounded flows and may not be well suited for the jet-in-a-crossflow situation. Close agreement with experimental results was obtained at the jet exit and far downstream of the jet injection region, but all models typically overpredicted the magnitude of the velocities in the wake region behind the jet. The present study clearly underscores the deficiencies of the current models, and demonstrates the need for improvements. [S0889-504X(00)03002-6]
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献