Experimental Analysis of an Ultra-Compact Combustor Powered Turbine Engine

Author:

Bohan Brian T.1,Polanka Marc D.1

Affiliation:

1. Air Force Institute of Technology, WPAFB, OH 45433

Abstract

Abstract The innovative ultra-compact combustor (UCC) is an alternative to traditional turbine engine combustors and has been shown to reduce the combustor length and offer potential improvements in combustion efficiency. Prior UCC configurations featured a circumferential combustion cavity positioned around the outside diameter (OD) of the engine. This configuration would be difficult to implement in a vehicle with a small, fixed diameter and had difficulty migrating the hot combustion products at the OD radially inward across an axial core flow to present a uniform temperature distribution to the first turbine stage. This study draws from preliminary computational analysis which enabled experimental testing of a new UCC configuration that featured a smaller diameter circumferential cavity that exhausted axially into a dilution zone positioned just upstream of the nozzle guide vanes. The combustor was sized as a replacement burner for the JetCat P90 RXi small-scale turbine engine and fit inside the engine casing. This combustor configuration achieved a 33% length reduction compared to the stock JetCat combustor and achieved comparable engine performance across a limited operating range. Self-sustained engine operation was achieved with a rotating compressor and turbine making this study the first to achieve operation of a UCC-powered turbine engine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference18 articles.

1. Analysis of Flow Migration in an Ultra-Compact Combustor;ASME J. Eng. Gas Turbines Power,2013

2. Performance Characterization of a Circumferential Combustion Cavity,2018

3. Experimental Analysis of an Additively Manufactured Cooled Ultra Compact Combustor Vane,2019

4. Swirling Flow Combustion - Fundamentals and Application,1973

5. Effect of Centrifugal Force on Turbulent Premixed Flames;ASME J. Eng. Gas Turbines Power,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3