Acoustic Radiation From an Infinite Laminated Composite Cylindrical Shell With Doubly Periodic Rings

Author:

Yin X. W.1,Liu L. J.2,Hua H. X.2,Shen R. Y.2

Affiliation:

1. Wuxi Branch, Jiangsu Institute of Safety Supervision and Inspection for Special Equipment, Huishan Economic Development Zone, Wuxi, Jiangsu Province, 214171, China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China

Abstract

Abstract Acoustic radiation from a point-driven, infinite fluid-loaded, laminated composite shell, which is reinforced by doubly periodic rings, is investigated theoretically. The theory is based on the classical laminated composite shell theory, the Helmholtz equation, and the boundary conditions at the shell-fluid interface as well as at the junctions between the shell and the rings. The rings interact with the shell only through normal forces. The solution for the radial displacement in wave number domain is developed by using Mace’s method (1980, “Sound Radiation Form a Plate Reinforced by Two Sets of Parallel Stiffeners,” J. Sound Vib., 71(3), pp. 435–441) for an infinite flat plate. The stationary phase approximate is then employed to find the expression for the far-field pressure. Numerical results are presented for discussion of the effects of lamination schemes, Poisson’s ratios, ply angles, and damping on the far-field acoustic radiation, which may lend themselves to better understanding the characteristics of acoustic radiation from the laminated composite shells. In addition, the helical wave spectra of the stiffened cylinders are presented, in which the effects of wave number conversion due to the periodic rings are obviously identified as additional bright patterns.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3