Rayleigh Light Scattering Measurements of Transient Gas Temperature in a Rapid Chemical Vapor Deposition Reactor

Author:

Horton J. F.1,Peterson J. E.1

Affiliation:

1. Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611-6300

Abstract

A laser-induced Rayleigh light scattering (RLS) system was used to measure transient gas temperatures in a simulated rapid chemical vapor deposition (RCVD) reactor. The test section geometry was an axisymmetric jet of carrier gas directed down, impinging on a heated wafer surface. RLS was used to measure instantaneous gas temperature at several locations above the wafer as it was heated from room temperature to 475 K. Gas flow rate and wafer temperature correspond to jet Reynolds number Rei=60, wafer maximum Grashof number GrH=4.4×106, and maximum mixed convection parameter GrH/Rei2=1200; all conditions typical of impinging jet reactors common in the numerical literature. Uncertainty of RLS transient temperature from a propagated error analysis was ±2–4 K. Peak gas temperature fluctuations were large (in the order of 25 to 75 °C). Both flow visualization and RLS measurements showed that the flow field was momentum dominated prior to heating initiation, but became unstable by GrH/Rei2=5. It then consisted of buoyancy-induced plumes and recirculations. Up to the peak wafer temperature, the flow field continued to be highly three-dimensional, unsteady, and dominated by buoyancy. RLS measurements are shown to provide information on carrier gas instantaneous temperature and flow field stability, both critical issues in RCVD processing. [S0022-1481(00)02401-4]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3