Wear and Friction of Carbon Nanofiber-Reinforced HDPE Composites

Author:

Xu Songbo,Akchurin Aydar1,Liu Tian,Wood Weston2,Tangpong X. W.,Akhatov Iskander S.1,Zhong Wei-Hong2

Affiliation:

1. Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108

2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164

Abstract

New applications of carbon-based materials have been continuously developed in recent years. Carbon nanofibers (CNFs) with silane coatings were added into high density polyethylene (HDPE) to improve the tribological properties of the nanocomposite material. The nanocomposites were fabricated with various weight percentages of carbon nanofibers (0.5 wt.%, 1 wt.% and 3 wt.%) that were treated with different silane coating thicknesses (2.8 nm and 46 nm) through melt-mixing and compressive processing. The wear and friction tests were performed on a pin-on-disc tribometer under phosphate buffered saline lubricated condition. Compared with the neat HDPE, the friction coefficients of the nanocomposites were reduced in all samples, yet only a couple of nanocomposite samples showed lower wear rates. Micro-hardness measurements of the nanocomposites were carried out and CNFs were found to be capable of increasing the material’s micro-hardness. The effects of concentration and silane coating thickness of CNFs on the tribological properties of the resulting nanocomposites were analyzed and the wear mechanisms of the HDPE/CNF nanocomposites were discussed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3