Benefits of Compressor Inlet Air Cooling for Gas Turbine Cogeneration Plants

Author:

De Lucia M.1,Lanfranchi C.1,Boggio V.2

Affiliation:

1. Dipartimento di Energetica, Universita` di Firenze, Firenze, Italy

2. CRIT S.r.l., Prato, Italy

Abstract

Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NOx LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climatic data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Refrigerated Inlet Cooling on Greenhouse Gas Emissions for a 250 MW Class Gas Turbine Engine;Aerospace;2023-09-25

2. Inlet air fogging strategy using natural gas fuel cooling potential for gas turbine power plants;Case Studies in Thermal Engineering;2022-09

3. Influence of wet compression on aerodynamic performance and stability boundary of transonic compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-01-20

4. Main components of cogeneration and polygeneration systems;Cogeneration and Polygeneration Systems;2021

5. Thermal Energy Storage For Gas Turbine Power Augmentation;Journal of the Global Power and Propulsion Society;2019-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3