The Velocity Field Underneath Linear and Nonlinear Breaking Rogue Waves

Author:

Alberello Alberto1,Chabchoub Amin2,Babanin Alexander V.1,Monty Jason P.3,Elsnab John3,Lee Jung H.1,Bitner-Gregersen Elzbieta M.4,Toffoli Alessandro1

Affiliation:

1. Swinburne University of Technology, Hawthorn, Australia

2. University of Tokyo, Kashiwa, Japan

3. University of Melbourne, Parkville, Australia

4. DNV GL AS, Høvik, Norway

Abstract

During the past decades, a large number of waves of extreme height and abnormal shape, also known as freak or rogue waves, have been recorded in the ocean. Velocities and related forces can be enormous and jeopardise the safety of marine structures. Here, we present an experimental study devoted to investigate the velocity field underneath a breaking rogue wave. The latter is replicated in the laboratory by means of dispersive focussing methods such as the New Wave Theory and nonlinear focussing techniques based on the Nonlinear Schrödinger equation. While the former is basically a liner method, the nonlinear focussing fully accounts for the dynamical evolution of the wave field. Experiments were carried out in the Extreme Air-Sea Interaction flume of the University of Melbourne using a Particle Image Velocimetry (PIV) system to measure the velocity field below the water surface. Measurements show that the mechanism of generation affects the shape of the breaking waves as well as the kinematic field and associated hydrodynamic forces. Particularly, the New Wave Theory leads to higher velocities and a more energetic breaker than the nonlinear focussing.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3