Effects of Curvature on Slamming Loads

Author:

Weber John B.1,Das Raj1,Battley Mark1

Affiliation:

1. University of Auckland, Auckland, New Zealand

Abstract

Much research has been directed at understanding and predicting water slamming loads for a range of geometries of varying rigidity and size. Analytical and numerical studies focused on slamming of cylindrical rigid bodies are present in literature but there are relatively few experimental studies useful for validation purposes, none of which methodically investigate a range of curvatures. Despite the current understanding of slamming loads and structural responses, high speed marine vehicles still experience slamming related failures in operation. In this study, nominally rigid, singly curved prismatic specimens of varying curvature are subjected to constant velocity water impacts relevant to those encountered by high performance offshore racing yachts and other high-speed craft. Peak impact forces of 14 to 52 kN were recorded while testing specimens with radii ranging from 0.300 to 5.000 m. Experimental peak impact force and event impulse are found to be significantly lower than predicted by numerical and small scale empirically derived methods. A modification is introduced which improves the empirical model.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3