H2S Consumption and the Derivation of a New Annulus Prediction Model for Offshore Flexible Pipes

Author:

Haahr Marie1,Gudme Jonas1,Sonne Jacob1,Overby Sten1,Nielsen Torben1,Rubin Adam1

Affiliation:

1. National Oilwell Varco, Flexibles, Brøndby, Denmark

Abstract

This paper presents the outcome of investigations on the effects of H2S consumption in the annulus of a flexible pipe. Low-molecular gases, such as CH4, H2S, H2O and CO2, permeate slowly from the bore through the inner liner into the annular space between the inner liner and outer sheath of a flexible pipe. This space is densely packed with carbon steel armour wires leaving a very limited free volume. In the presence of water, a corrosive environment for the armour wires is generated and a risk of sour service cracking is introduced. H2S concentration in the annulus is traditionally calculated by balancing the inflow through inner liner and the outflow through outer sheath and vent valve. In order to assure H2S resistance of the armour wires towards calculated H2S concentrations, pipes for sour service are typically designed with lower strength wire grades of larger dimensions compared to the possibilities of sweet service pipes. Over the last decade, more and more offshore data has been obtained indicating considerably less H2S in the annulus than predicted by the traditional annulus models. This observation has triggered in-depth investigations of the complex corrosive H2S environment inside a flexible pipe annulus exposed to sour service conditions. An extensive small-scale test program has been conducted and showed that at permeation rates typical for flexible pipes, the consumption of H2S in the corrosion processes occurring in the annular space lowers the concentration and hence criticality of the H2S so significantly that it leaves the traditional models overly conservative to an extreme extent. Using this knowledge of consumption of the corrosive gases in the annulus has become an increasingly important topic with the focus on deeper waters, cost savings and service life extensions without compromising flexible pipe integrity. Based on experimental data obtained, a new annulus model for prediction of H2S pressure in annulus has been derived. Data is presented in this paper to illustrate the methodology for an annulus prediction where the consumption of H2S is included. The data presented covers laboratory tests with variations and effects of gas flux, H2S concentration and total pressure. A full-scale validation, led to an Independent Verification Agency certification of the model. With the introduction of this new annulus prediction model, a wider range of wire products becomes available for the pipe designers. Lower weight pipes with stronger armour wires render optimizations for both cost savings and applications at deeper waters possible.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reuse of Flexible Pipes in Revitalization of Brown Fields;Day 4 Thu, May 09, 2024;2024-04-29

2. Condensation distribution and evolution characteristics of water vapor in annulus of flexible riser;Journal of Petroleum Exploration and Production Technology;2023-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3