Convection Heat Transfer of Power-Law Fluids Along the Inclined Nonuniformly Heated Plate With Suction or Injection

Author:

Sui Jize12,Zheng Liancun3,Zhang Xinxin4

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;

2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

3. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China e-mail:

4. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

A comprehensive analysis to convection heat transfer of power-law fluids along the inclined nonuniformly heated plate with suction or injection is presented. The effects of power-law viscosity on temperature field are taken into account in highly coupled velocity and temperature fields. Analytical solutions are established by homotopy analysis method (HAM), and the effects of pertinent parameters (velocity power-law exponent, temperature power index, suction/injection parameter, and inclination angle) are analyzed. Some new interesting phenomena are found, for example, unlike classical boundary layer problem in which the skin friction monotonically increases (decreases) with suction increases (injection increases), but there exists a special region where the skin friction is not monotonic, which is strongly bound up with Prandtl number, which have never been reported before. The nonmonotony occurs in suction region for Prandtl number Npr < 1 and injection region for Npr > 1. Results also illustrate that the velocity profile decreases but the heat convection is enhanced obviously with increasing in temperature power exponent m (generalized Prandtl number Npr has similar effects), the decreases in inclination angle lead to the reduction in convection and heat transfer efficiency.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3