Evolution of Residual Stress in Tensile Armour Wires of Flexible Pipes During Pipe Manufacture

Author:

Fernando Upul S.1,Davidson Michelle1,Yan Kun2,Roy Matthew J.3,Pirling Thilo4,Withers Philip J.3,Francis John A.3

Affiliation:

1. GE Oil & Gas, Newcastle upon Tyne, UK

2. University of Manchester, Didcot, UK

3. University of Manchester, Manchester, UK

4. Institute Laue-Langevin (ILL), Grenoble, France

Abstract

Tensile armour layers in unbonded flexible pipes are constructed by the parallel helical wrapping of several rectangular wires. Pairs of layers, wound in opposite directions and with different helical shapes are used to provide the necessary axial strength, water depth capacity and torsion balance. The forming of armour wires as supplied by the vendor into a helix shape on the pipe involves significant plastic straining; twisting and repeated bending of the wires in different planes. The wires that are wrapped on the pipe are not unloaded. Therefore the armour wires in flexible pipes are considered to contain residual stress (RS). Knowledge of RS in the wires of the manufactured pipe is essential in making appropriate design decisions with high confidence to meet material utilization requirements and subsequently predict the integrity and fatigue durability of the pipe. This paper describes an investigation performed to examine the evolution of RS in the tensile wires during various stages of the pipe manufacturing process. To this end, different methods including a relatively simple and inexpensive stress relaxation method termed the contour method, as well as diffraction methods were used to evaluate RS in the wire. A finite element (FE) model has been developed to simulate the wire deformation involved in the pipe manufacturing process. The procedure was used to predict the evolution of RS in a tensile wire and change in material response during the pipe manufacturing process. A comparison of FE model predictions and measured data is given. The results show that the RS measured by the contour method give comparable values to those obtained from more advanced methods such as high energy synchrotron X-ray and neutron diffraction. The need for using representative material properties and deformation boundary conditions in FE models to predict RS accurately is highlighted.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3