High Cycle Fatigue Damage Evaluation of Steel Pipelines Based on Microhardness Changes During Cyclic Loads

Author:

Drumond Geovana1,Pinheiro Bianca1,Pasqualino Ilson1,Roudet Francine2,Chicot Didier2,Decoopman Xavier2

Affiliation:

1. Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

2. University Lille 1, Lille, France

Abstract

Fatigue is a major cause of failures concerning metal structures, being capable of causing catastrophic damage to the environment and considerable financial loss. Steel pipelines used in oil and gas industry for hydrocarbon transportation, for instance, are submitted to the action of cyclic loads, being susceptible to undergo fatigue failures. The phenomenon of metal fatigue is a complex process comprising different successive mechanisms. In general, four stages can be identified, representing microcrack initiation (nucleation), microcracking, macrocrack propagation, and final fracture. Fatigue damage prior to nucleation of microcracks is primarily related to localized plastic strain development at or near material surface during cycling. The microhardness of the material shows its ability to resist microplastic deformation caused by indentation or penetration, and is closely related to the material plastic slip capacity. Therefore, the study of changes in material surface microhardness during the different stages of fatigue process can estimate the evolution of the material resistance to microplastic deformations and, consequently, provide relevant information about the cumulated fatigue damage on the surface. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. In a previous work, the X-ray diffraction technique was used to evaluate these changes. This technique presents several advantages, since it is non-destructive and concerns the surface and subsurface of the material, where major microstructural changes take place during fatigue. The most important parameter obtained by this technique is the full width at half maximum (FWHM) of the diffraction peak, which can provide information about the dislocation network density and estimate microdeformations. It was found that the evolution of this parameter with cycling presents three different stages, associated to the mechanisms of microcrack initiation, microcracking, macrocrack propagation, respectively. Here, the fatigue damage of pipeline steels is evaluated through microhardness testing. Different stages of changes in microhardness are also found and they are correlated to those observed with the X-ray technique and also with transmission electron microscopic (TEM) images from experimental tests performed with a similar material. This correlation can help to corroborate the X-ray diffraction results previously obtained and recommend then this non-destructive technique as the base of the method for predicting fatigue life of steel structures proposed here.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3