Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (STAIR)

Author:

Yue Lindsey1,Schroeder Nathan1,Ho Clifford K.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

Abstract

Abstract Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, a staggered angle iron receiver concept is investigated, with the goals of increasing particle curtain stability and opacity in a receiver. The concept consists of angle iron-shaped troughs placed in line with a falling particle curtain in order to collect particles and rerelease them, decreasing the downward velocity of the particles and the curtain spread. A particle flow test apparatus has been fabricated. The effect of staggered angle iron trough geometry, orientation, and position on the opacity and uniformity of a falling particle curtain for different particle linear mass flow rates is investigated using the particle flow test apparatus. For the baseline free falling curtain and for different trough configurations, particle curtain transmissivity is measured, and profile images of the particle curtain are taken. Particle mass flow rate and trough position affect curtain transmissivity more than trough orientation and geometry. Optimal trough position for a given particle mass flow rate can result in improved curtain stability and decreased transmissivity. The case with a slot depth of 1/4″, hybrid trough geometry at 36″ below the slot resulted in the largest improvement over the baseline curtain: 0.40 transmissivity for the baseline and 0.14 transmissivity with the trough. However, some trough configurations have a detrimental effect on curtain stability and result in increased curtain transmissivity and/or substantial particle bouncing.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3