A Three-Dimensional Computational Investigation of Intraventricular Fluid Dynamics: Examination Into the Initiation of Systolic Anterior Motion of the Mitral Valve Leaflets

Author:

Yoganathan Ajit P.1,Lemmon Jack D.1,Kim Young H.1,Levine Robert A.1,Vesier Carol C.1

Affiliation:

1. Cardiovascular Fluid Mechanics Laboratory, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Systolic anterior motion of the mitral valve leaflets (SAM) is a disease of the left ventricle which results from an abnormal force balance on the mitral valve. The mechanism by which is initiated is poorly understood, and a complete understanding of this mechanism is required for effective treatment of SAM. There are currently two theories for the initiation mechanism of SAM, the Venturi hypothesis and the altered papillary muscle-mitral valve geometry theory (PM-MV). The Venturi hypothesis states that abnormally high ejection velocities create Venturi forces which initiate SAM. The PM-MV theory asserts that SAM is the result of abnormally distributed chordal forces which are incapable of preventing SAM. To investigate the initiation mechanism of SAM, a computer model of early systolic flow in an anatomically-correct human left ventricle was developed using Peskin’s immersed boundary algorithm. The computer model was used to determine the effect of chordal force distribution and septal thickness of the intraventricular flow field. The results show that the degree of SAM is inversely proportional to the amount of chordal restraint applied to the central portion of the leaflets. Also, the results support the PM-MV theory and indicate the following: (i) fluid forces capable of initiating SAM as always present in a normal human ventricle; (ii) SAM does not occur normally because of the presence of chordal forces on the central portion of the mitral leaflet; (Hi) SAM will occur when these central chordal forces are sufficiently low; (iv) the extent of SAM is inversely proportional to these central chordal forces; and (v) Venturi forces alone can not cause SAM.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3