Direct In Vitro Determination of the Patellofemoral Contact Force for Normal Knees

Author:

Singerman R.1,Berilla J.1,Davy D. T.1

Affiliation:

1. Orthopaedic Engineering Laboratory, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106

Abstract

Results of the direct in vitro measurement of the full three-dimensional representation of the patellofemoral contact force and the point of application on the patella of the resultant contact force for eleven normal knees are presented. The applied knee moment versus flexion angle pattern was similar to that experienced when rising from a chair. There was a wide variability of the details of the patellofemoral force interaction among the specimens tested. The magnitude of the resultant contact force increased approximately linearly with flexion angle for some knees while in others the force leveled off or decreased at higher flexion angles. The change in direction of the resultant contact force with respect to the patella was relatively small compared to the angular rotation of the patella. The medial-lateral component of the contact force exhibited substantial variability among knees. The direction of this force (medially or laterally directed) varied among knees and, in some knees, changed direction as a function of flexion angle. The point of application on the patella of the resultant contact force migrated superiorly from 20 to 90 deg flexion. Above 90 deg flexion this point tended to migrate inferiorly. The only significant and consistent effect of varying the direction of the quadriceps extension force was a change in the medial-lateral component of the contact force. In all cases, the tendency to sublux laterally increased when the extensor force was rotated 10 deg laterally and decreased when the extensor force was rotated 10 deg medially.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3