Mass∕Heat Transfer in Rotating, Smooth, High-Aspect Ratio (4:1) Coolant Channels With Curved Walls

Author:

Sethuraman Eashwar1,Acharya Sumanta1,Nikitopoulos Dimitris E.1

Affiliation:

1. Turbine Innovation and Energy Research (TIER) Center, Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803

Abstract

The paper presents an experimental study of heat∕mass transfer coefficient in 4:1 aspect ratio smooth channels with nonuniform cross sections. Curved leading and trailing edges are studied for two curvatures of 9.06 m−1 (0.23 in.−1) and 15.11 m−1 (0.384 in.−1) and for two different curvature configurations. One configuration has curved walls with curvature corresponding to the blade profile (positive curvature on both leading and trailing walls) and the other configuration has leading and trailing walls that curve inward into the coolant passage (negative curvature on the leading surface and positive curvature on the trailing surface). A detailed study at Re=10,000 with rotation numbers in the range of 0–0.07 is undertaken for the two different curvature configurations. All experiments are done for a 90 deg passage orientation with respect to the plane of rotation. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. Only the radially outward flow is considered for the present study. The spanwise mass transfer distributions of fully developed regions of the channel walls are also presented. The mass transfer data from the curved wall channels are compared to those from a smooth 4:1 rectangular duct with similar flow parameters. The local mass transfer data are analyzed mainly for the fully developed region, and area-averaged results are presented to delineate the effect of the rotation number. Heat transfer enhancement especially in the leading wall is seen for the lower curvature channels, and there is a subsequent reduction in the higher curvature channel when compared to the 4:1 rectangular smooth channel. This indicates that an optimal channel wall curvature exists for which heat transfer is the highest.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Heat Transfer in Rotating Serpentine Passages With Smooth Walls;Wagner;ASME J. Turbomach.

2. Johnson, B. V., Wagner, J. H., and Steuber, G. D., 1993, “Effects of Rotation on Coolant Passage Heat Transfer,” NASA Contractor Report No. 4396, Vol. II.

3. Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs;Park;Int. J. Heat Mass Transfer

4. Heat (Mass) Transfer in a Rotating Two Pass Square Channel-Part-II: Local Transfer Coefficient, Smooth Channel;Kukreja;Int. J. Rotating Mach.

5. Local Heat Transfer Distribution in a Rotating Serpentine Rib-Roughened Flow Passage;Zhang;ASME J. Heat Transfer

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3