Constitutive Modeling of Coronary Arterial Media—Comparison of Three Model Classes

Author:

Hollander Yaniv1,Durban David1,Lu Xiao2,Kassab Ghassan S.2,Lanir Yoram3

Affiliation:

1. Faculty of Aerospace Engineering, Technion–Israel Institute of Technology, Haifa 3200, Israel

2. Department of Biomedical Engineering Surgery, Cellular and Integrative Physiology, IN University Purdue University at Indianapolis, Indianapolis, IN 46202

3. Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa 3200, Israel

Abstract

Accurate modeling of arterial elasticity is imperative for predicting pulsatile blood flow and transport to the periphery, and for evaluating the mechanical microenvironment of the vessel wall. The goal of the present study is to compare a recently developed structural model of porcine left anterior descending artery media to two commonly used typical representatives of phenomenological and structure-motivated invariant-based models, in terms of the number of model parameters, model descriptive and predictive powers, and requisite different test protocols for reliable parameter estimation. The three models were compared against 3D data of radial inflation, axial extension, and twist tests. Also checked are the models predictive capabilities to response data not used for estimation, including both tests outside the range of estimation database, as well as protocols of a different nature. The results show that the descriptive estimation error (model fit to estimation database), measured by the sum of squared residuals (SSE) between full 3D data and model predictions, was about twice as low for the structural (4.58%) model compared to the other two (9.71 and 8.99% for the phenomenological and structure-motivated models, respectively). Similar SSE ratios were obtained for the predictive capabilities. Prediction SSE at high stretch based on estimation of two low stretches yielded an SSE value of 2.81% for the structural model, and 10.54% and 7.87% for the phenomenological and structure-motivated models, respectively. For the prediction of twist from inflation-extension data, SSE values for the torsional stiffness was 1.76% for the structural model and 39.62 and 2.77% for the phenomenological and structure-motivated models. The required number of model parameters for the structural model is four, whereas the phenomenological model requires six to nine and the structure-motivated has four parameters. These results suggest that modeling based on the tissue structural features improves model reliability in describing given data and in predicting the tissue general response.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3