Affiliation:
1. German Aerospace Center (DLR e.V.), Pfaffenwaldring 38–40, 70569 Stuttgart, Germany
Abstract
High temperature thermal storage technologies that can be easily integrated into future concentrated solar power plants are a key factor for increasing the market potential of solar power production. Storing thermal energy by reversible gas–solid reactions has the potential of achieving high storage densities while being adjustable to various plant configurations. In this paper the Ca(OH)2/CaO reaction system is investigated theoretically. It can achieve storage densities above 300 kWh/m3 while operating in a temperature range between 400 and 600°C. Reactor concepts with indirect and direct heat transfer are being evaluated. The low thermal conductivity of the fixed bed of solid reactants turned out to considerably limit the performance of a storage tank with indirect heat input through the reactor walls. A one-dimensional model for the storage reactor is established and solved with the Finite Element Method. The reactor concept with direct heat transfer by flowing the gaseous reactant plus additional inert gas through the solid reactants did not show any limitation due to heat transfer. If reaction kinetics are fast enough, the reactor performance in case of the Ca(OH)2/CaO reaction system is limited by the thermal capacity of the gaseous stream to take-up heat of reaction. However, to limit pressure drop and the according losses for compression of the gas stream, the size of the storage system is restricted in a fixed bed configuration.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献