Active Vibration Absorption Using Delayed Resonator With Relative Position Measurement

Author:

Olgac N.1,Hosek M.1

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT

Abstract

A novel active vibration absorption technique, the Delayed Resonator, has been introduced recently as a unique way of suppressing undesired oscillations. It suggests a control force on a mass-spring-damper absorber in the form of a proportional position feedback with a time delay. Its strengths consist of extremely simple implementation of the control algorithm, total vibration suppression of the primary structure against a harmonic force excitation and full effectiveness of the absorber in a semi-infinite range of disturbance frequency, achieved by real-time tuning. All this development work was done using the absolute displacements of the absorber in the feedback. These measurements, however, may be difficult to obtain and for some applications impossible. This paper deals with the operating and design repercussions caused by the substituting of an easier measurement: the relative motion of the absorber with respect to the primary structure. Although the proposition sounds like a trivial extension to the prior work it gives rise to important concerns such as system stability. Theoretical foundations for the Delayed Resonator (DR) are briefly recapitulated and its implementation on a single-degree-of-freedom primary structure disturbed by a harmonic force is discussed utilizing both absolute and relative position measurement of absorber mass. Methods for stability range analysis and transient behavior are presented as design tools. Properties observed for the same system with these two different feedbacks are compared. Another important advantage of the relative position feature is is to decouple the operation of the absorber from the primary structure entirely.

Publisher

ASME International

Subject

General Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3